
 

 

 

 

INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section C 
 

Symbolic reasoning under uncertainty 



 Problem are not always consistent, complete and 

unchanging  

 

 Monotonicity 

 New facts can be added to the system.  If these new 

facts are consistent with all the other facts that have 

already been asserted, then nothing will ever be 

retracted from the set of facts that are known to be true.  



UNCERTAINTY 

Several Approaches Related to  

 

Mathematical and Statistical Theories  

 

 Bayesian Statistics 

 

 Fuzzy Sets  



UNCERTAINTY IN AI  

Approximate Reasoning, Inexact Reasoning 



RELEVANT INFORMATION IS DEFICIENT 

IN ONE OR MORE 

 Information is partial 

 Information is not fully reliable 

 Representation language is inherently imprecise 

 Information comes from multiple sources and it is 
conflicting 

 Information is approximate 

 Non-absolute cause-effect relationships exist 

 

 Can include probability in the rules 

 IF the interest rate is increasing, THEN the price of stocks 
will decline (80% probability) 



TYPES OF UNCERTAINTY 

  Uncertainty in prior knowledge 

 

  E.g., some causes of a disease are unknown   

  and are not represented in the background 

  knowledge of a medical-assistant agent 



TYPES OF UNCERTAINTY 

  Uncertainty in actions 
 
 E.g., to deliver this lecture: 
    I must be able to come to college 
    my computer must be working 
    the LCD projector must be working 
     
 
As we discussed with planning, actions are 
represented with relatively short lists of 
preconditions, while these lists are in fact arbitrary 
long. It is not efficient (or even possible) to list all 
the possibilities.  
 

 



TYPES OF UNCERTAINTY 

  Uncertainty in perception 

 

 E.g., sensors do not return exact or complete 

information about the world; a robot never knows 

exactly its position. 

 

Courtesy R. Chatila 



SOURCES OF UNCERTAINTY 

  Laziness (efficiency) 

  Ignorance 

 

What we call uncertainty is a summary of all that is 

not explicitly taken into account  

in the agent’s knowledge base (KB). 

 



ASSUMPTIONS OF REASONING WITH 

PREDICATE LOGIC 

(1). Predicate descriptions must be sufficient with 

respect to the application domain. 

 

Each fact is known to be either true or false. But 

what does lack of information mean? 

 Closed world assumption, assumption based 

reasoning:  

 PROLOG: if a fact cannot be proven to be true, 

assume that it is false 

 HUMAN: if a fact cannot be proven to be false, 

assume it is true 

  



ASSUMPTIONS OF REASONING WITH 

PREDICATE LOGIC (CONT’D) 

(2). The information base must be consistent. 

 Human reasoning: keep alternative (possibly 

conflicting) hypotheses. Eliminate as new evidence 

comes in. 



ASSUMPTIONS OF REASONING WITH 

PREDICATE LOGIC (CONT’D) 

(3).  Known information grows monotonically through 

the use of inference rules. 

 Need mechanisms to: 

  add information based on assumptions (nonmonotonic 

reasoning), and 

  delete inferences based on these assumptions in case 

later evidence shows that the assumption was incorrect 

(truth maintenance). 



QUESTIONS 

 How to represent uncertainty in knowledge? 

 

 How to perform inferences with uncertain 

knowledge? 

 

 Which action to choose under uncertainty? 



APPROACHES TO HANDLING UNCERTAINTY 

 

 Default reasoning [Optimistic] 

 non-monotonic logic 

 Worst-case reasoning [Pessimistic] 

 adversarial search:  

 Adversarial search, or game-tree search, is a technique 

for analyzing an adversarial game in 

  order to try to determine who can win the game and what 

moves the players should make in order to win. 

 Probabilistic reasoning [Realist] 

 probability theory 



DEFAULT REASONING 

 Rationale: The world is fairly normal. Abnormalities 

are rare. 

 So, an agent assumes normality, until there is 

evidence of the contrary. 

 E.g., if an agent sees a bird X, it assumes that X 

can fly, unless it has evidence that X is a penguin, 

an ostrich, a dead bird, a bird with broken wings, … 



MODIFYING LOGIC TO SUPPORT 

NONMONOTONIC INFERENCE 
 p(X)  unless q(X)  r(X) 

 If we  

  believe p(X) is true, and 

  do not believe q(X) is true (either unknown or 
believed to be false) 

 then we 

  can infer r(X) 

  later if we find out that q(X) is true, r(X) must be 
retracted 
 
“unless” is a modal operator: deals with belief 
rather than truth  



MODIFYING LOGIC TO SUPPORT 

NONMONOTONIC INFERENCE (CONT’D) 

 p(X)  unless q(X)   r(X)  in KB 

 p(Z)     in KB 

 r(W)   s(W)    in KB 

 - - - - - - 

  q(X)  ??    q(X) is not in KB 

 r(X)     inferred 

 s(X)     inferred 



EXAMPLE 

 If it is snowing and unless there is an exam 

tomorrow, I can go skiing. 

 It is snowing. 

 Whenever I go sking, I stop by at the Chalet to drink 

hot chocolate. 

 - - - - - - 

 I did not check my calendar but I don’t remember 

an exam scheduled for tomorrow, conclude: I’ll go 

skiing. Then conclude: I’ll drink hot chocolate. 

 



“ABNORMALITY” 

 p(X)  unless ab p(X)   q(X) 

 ab: abnormal 

 Examples:  If X is a bird, it will fly unless it is 

  abnormal.  

 (abnormal: broken wing, sick, trapped, ostrich, ...) 

  If X is a car, it will run unless it is abnormal. 

 (abnormal: flat tire, broken engine, no gas, …) 



ANOTHER MODAL OPERATOR: M 

 p(X)  M q(X)  r(X) 

 If   

  we believe p(X) is true, and 

  q(X) is consistent with everything else, 

 then we 

 can infer r(X) 

 

“M” is a modal operator for “is consistent.” 
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Probabilities and 
Related Approaches  

The Probability Ratio  

• P(X) = Number of outcomes favoring the occurrence of X    

                    ------------------------------------------------------------ 

                                 Total number of outcomes 

• Multiple Probability Values in Many Systems 

 Three-part antecedent (probabilities: 0.9, 0.7, and 0.65) 

 The overall probability:  

P = (0.9)(0.7)(0.65) = 0.4095  

• Sometimes one rule references another - individual rule 
probabilities can propagate from one to another 



SEVERAL APPROACHES FOR 

COMBINING PROBABILITIES  

 Probabilities can be  

Multiplied (joint probabilities)  

Averaged (simple or a weighted average) 

Highest value 

Lowest value 

 Rules and events are considered independent of each 

other 

 If Dependent - Use the Bayes extension theorem 

 



AXIOMS OF PROBABILITY 

 For any propositions A, B 

  

 0 ≤ P(A) ≤ 1 

 P(true) = 1 and P(false) = 0 

 P(A  B) = P(A) + P(B) - P(A  B) 

  



BAYESIAN APPROACH    

 It depend on the use of known prior and likely 

probabilities. 

 It is introduced by Clergyman Thomas Bayes in the 

eighteenth Century. 

 It depends on the use of conditional probabilities of 

specified events when it is known that other events 

have occurred. 

 



 For two events H and E with the Probability  P(E) > 

0, the conditional probability of event H, given that 

event E has occurred , is defined as 

 P (H/E) = P(H & E) /P(E)  1 

 The Conditional probability of event E given that 

event H occurred can likewise be written  

 P (E/H) = P(H & E) /P(H)  2 

 From 1 & 2 

 P (H/E)=P(E/H)P/(H) /P(E)  3 



EXAMPLE 

 Patient has the certain disease D1 given the 

symptom E we wish to find out P(D1/E). 

 P(D1) =0.05 and P(E) = 0.15 P(E/D1) =0.95 

 P(D1/E) = 0.32 



 If P(E) is difficult to obtain , then replace H with 

~H in equation 3. 

•  P (~H/E)=P(E/~H)P/(~H) /P(E)  4 

 

 Divide equation ¾  

 P (H/E)/ P (~H/E)= P(E/H)P/(H) / P(E/~H)P/(~H) 

 O (H/E) = L(E/H).O(H)    5 

 Posterior odds = likelihood ratio * prior odds on 

H.  

 



SYNTAX 

 Basic element: random variable 
 

 Similar to propositional logic: possible worlds defined by assignment 
of values to random variables. 

 

 

 Boolean random variables 

  
e.g., Cavity (do I have a cavity?) 

 

 Discrete random variables 

  
e.g., Weather is one of <sunny,rainy,cloudy,snow> 

 Domain values must be exhaustive and mutually exclusive 
 

 

(A25 gets me there on time | …)  = 0.04  

P(A90 gets me there on time | …)  = 0.70  

P(A120 gets me there on time | …)  = 0.95  

P(A1440 gets me there on time | …)  = 0.9999  

 



Suppose I believe the following: 

 
P(A25 gets me there on time | …)  = 0.04  

P(A90 gets me there on time | …)  = 0.70  

P(A120 gets me there on time | …)  = 0.95  

P(A1440 gets me there on time | …)  = 0.9999  

 

 



SYNTAX 

Atomic event: A complete specification of 
the state of the world about which the agent 
is uncertain 
E.g., if the world consists of only two Boolean 

variables Cavity and Toothache, then there are 4 
distinct atomic events: 

 
Cavity = false Toothache = false 

Cavity = false  Toothache = true 

Cavity = true  Toothache = false 

Cavity = true  Toothache = true 

Atomic events are mutually exclusive and 
exhaustive 

 



PRIOR PROBABILITY 

 Prior or unconditional probabilities of propositions 

  
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to 

belief prior to arrival of any (new) evidence 

 
 

 Probability distribution gives values for all possible assignments: 

  
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1) 

    

 Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables 

  



P(Weather,Cavity) = a 4 × 2 matrix of values: 

 
 

 Weather =  sunny rainy cloudy snow  

 Cavity = true   0.144 0.02  0.016  0.02 

 Cavity = false  0.576 0.08  0.064  0.08 

 
 

 Every question about a domain can be answered by the joint 
distribution 



CONDITIONAL PROBABILITY 

 Conditional or posterior probabilities 

  
e.g., P(cavity | toothache) = 0.8 

 

i.e., given that toothache is all I know 

 
 

 (Notation for conditional distributions: 

  
P(Cavity | Toothache) = 2-element vector of 2-element vectors) 

 

 



 If we know more, e.g., cavity is also given, then we have 

  
P(cavity | toothache,cavity) = 1 

 

 

 New evidence may be irrelevant, allowing simplification, e.g., 

 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8 

 This kind of inference, sanctioned by domain knowledge, is 
crucial 



CONDITIONAL PROBABILITY 

 Definition of conditional probability: 

 P(a | b) = P(a  b) / P(b) if  P(b) > 0 

 Product rule gives an alternative formulation: 
P(a  b) = P(a | b) P(b) = P(b | a) P(a) 

 
 

 A general version holds for whole distributions, e.g. 



P(Weather,Cavity) = P(Weather | Cavity) P(Cavity) 

(View as a set of 4 × 2 equations, not matrix mult.) 

 
 

 Chain rule is derived by successive application of product 
rule: 

 P(X1, …,Xn)  = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1) 

                  = P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1) 

                   = … 

                   = πi= 1^n P(Xi | X1, … ,Xi-1) 

 

 



INFERENCE BY ENUMERATION 

 Start with the joint probability distribution: 

 

 

 

 

 

 For any proposition φ, sum the atomic events 
where it is true: P(φ) = Σω:ω╞φ P(ω) 



INFERENCE BY ENUMERATION 

 Start with the joint probability distribution: 

 

 

 

 

 

 For any proposition φ, sum the atomic events 
where it is true: P(φ) = Σω:ω╞φ P(ω) 

 P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 
 



INFERENCE BY ENUMERATION 

 Start with the joint probability distribution: 

 

 

 

 

 

 For any proposition φ, sum the atomic events 
where it is true: P(φ) = Σω:ω╞φ P(ω) 

 P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 
 

 



INFERENCE BY ENUMERATION 

 Start with the joint probability distribution: 

 

 

 

 

 Can also compute conditional probabilities: 

 P(cavity | toothache)  = P(cavity  toothache) 

      P(toothache) 

     =        0.016+0.064 

        0.108 + 0.012 + 0.016 + 
0.064 

     = 0.4 

 
 



NORMALIZATION 

 Denominator can be viewed as a normalization constant α 

 P(Cavity | toothache) = α, P(Cavity,toothache)  
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)] 

= α, [<0.108,0.016> + <0.012,0.064>]  

= α, <0.12,0.08> = <0.6,0.4> 

 

General idea: compute distribution on query variable by fixing evidence 
variables and summing over hidden variables 



INFERENCE BY ENUMERATION, CONTD. 

Typically, we are interested in  

 the posterior joint distribution of the query variables Y  

 given specific values e for the evidence variables E 

 

 

Let the hidden variables be H = X - Y - E 

 

 

Then the required summation of joint entries is done by summing out 
the hidden variables: 

 
P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h) 

 

 



 The terms in the summation are joint entries because Y, E and H 
together exhaust the set of random variables. 

 

 Obvious problems: 
1. Worst-case time complexity O(dn) where d is the largest arity 

2.  

2. Space complexity O(dn) to store the joint distribution 

3.  

3. How to find the numbers for O(dn) entries? 

 



INDEPENDENCE 

 A and B are independent iff 

 P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B) 

 

 
 

P(Toothache, Catch, Cavity, Weather) 

 = P(Toothache, Catch, Cavity) P(Weather) 
 

 32 entries reduced to 12; for n independent biased coins, 
O(2n) →O(n) 

 Absolute independence powerful but rare 

 Dentistry is a large field with hundreds of variables, none of 
which are independent. What to do? 



CONDITIONAL INDEPENDENCE 

 P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent 
entries 

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 

 (1) P(catch | toothache, cavity) = P(catch | cavity) 
 

 The same independence holds if I haven't got a cavity: 

 (2) P(catch | toothache,cavity) = P(catch | cavity) 
 

 

 Catch is conditionally independent of Toothache given Cavity: 

 P(Catch | Toothache,Cavity) = P(Catch | Cavity) 
 



CONDITIONAL INDEPENDENCE CONTD. 
 Write out full joint distribution using chain rule: 

 P(Toothache, Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 

 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) 
P(Cavity) 

 

 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 

 

 I.e., 2 + 2 + 1 = 5 independent numbers 

   In most cases, the use of conditional 
independence reduces the size of the 
representation of the joint distribution from 
exponential in n to linear in n. 

   

   Conditional independence is our most basic and 
robust form of knowledge about uncertain 
environments. 

 



 Equivalent statements: 
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 

 

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | 
Cavity) 

 

 



BAYES' RULE 

 Product rule P(ab) = P(a | b) P(b) = P(b | a) P(a) 

  Bayes' rule: P(a | b) = P(b | a) P(a) / P(b) 

 
 

 or in distribution form  

 P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y) 
 



 Useful for assessing diagnostic probability from 
causal probability: 

 
 P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect) 

 

 E.g., let M be meningitis, S be stiff neck: 
 P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008 

 Note: posterior probability of meningitis still very small! 

 



BAYES' RULE AND CONDITIONAL 

INDEPENDENCE 

P(Cavity | toothache  catch)  
= αP(toothache  catch | Cavity) P(Cavity)  

= αP(toothache | Cavity) P(catch | Cavity) P(Cavity)  

 

 

 This is an example of a naïve Bayes model: 

  

P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause) 

 

 

 

 

 

 

 Total number of parameters is linear in n 



SUMMARY 

Probability is a rigorous formalism for 
uncertain knowledge 

Joint probability distribution specifies 
probability of every atomic event 

Queries can be answered by summing over 
atomic events 

For nontrivial domains, we must find a way 
to reduce the joint size 

 Independence and conditional 
independence provide the tools 



DEMPSTER-SHAFER THEORY 

 Drawbacks of using Bayesian theory 

 The probabilities  are described as a single numeric 

point value. 

 Distortion to precision that is actually available for supporting 

evidence. 

 When we assert with probability 0.7 that the dollar will fall 

against the Japensese Yen over the next six months, what we 

really mean is we have a fairly strong conviction there is a 

chance of about 0.6 to 0.8 say, that it will fall 



DEMPSTER-SHAFER THEORY 

 Drawbacks of using Bayesian theory 

 No way to differentiate between ignorance and 

uncertainty.  

 Example 

 One of the three A, B, C terrorist group has planted a bomb. 

Let C found guilty and P(C) = 0.8. According to traditional 

theory rest of the probability will distributes amongst other 

without having any knowledege about them. 



DEMPSTER-SHAFER THEORY 

 Drawbacks of using Bayesian theory 

 Forced to regard belief and disbelief as functional 

opposite. 

 Ex. If P(A) = 0.3 then P(~A)= 0.7 so that P(A) + P(~A) =1 

 

AS A REMEDY FOR THE ABOVE PROBLEMS, 

GENERALISES THEORY HAS BEEN PROPOSED 

BY ARTHUR DEMPSTER (1968) AND EXTENDED 

BY STUDENT GLENN SHAFER (1976). 
 



DEMPSTER-SHAFER THEORY 

 Separate probability masses may be assigned to all 

subsets of a universe of discourse rather than just 

to individual single members. 

 It Permit the inequality P(A) + P(~A) <=1 

 It assume a universe of discourse U 

 A set corresponding to n proposition, exactly one of which is 

true. 

 The Propositions are assumed to be exhaustive and mutually 

exclusive.  

 



DEMPSTER-SHAFER THEORY 

 Let 2u denote all subsets of U. 

 Let the set function m defined on 2u , be a mapping to [0,1], 

 m : 2u   [0,1], be, such that for all subsets A C U 

 m ( $) =0 

 ∑m(A) =1 

     ACU 

 The function m defines a probability distribution on 2u .( 

not just on the singletons of U as in classical theory) 

 It represent the measure of belief committed exactly to 

A. 

 IT IS POSSIBLE TO ASSIGN BELIEF TO EACH 

SUBSET A OF U WITHOUT ASSIGNING ANY TO 

ANYTHING SMALLER. 

 



DEMPSTER-SHAFER THEORY 

 Bel(A) = ∑m(B) 

                  BCA 

 

A BELIEF FUNCTION, BEL , CORRESPONDING TO A 

SPECIFIC m FOR THE SET A, IS DEFINED AS THE 

SUM OF BELIEFS COMMITTED TO EVERY SUBSET 

OA A BY m. 

Ex: if U contain the mutually exclusive subsets A, B, C and 

D then  

Bel({A,C,D})=m({A,C,D}) + m({A,C}) + m({A,D}) + m({C,D}) 

+ m({A}) + m({C}) + m({D})  



DEMPSTER-SHAFER THEORY 

 Some related terms and facts: 

 In D-S T, a belief interval can also be defined for a 

subset A. It is represented as the subinterval [Bel(A), 

P1(A)] of [0,1]. 

 Support:  Bel(A) is also called support of A: 

 Plausibility: P1(A) =1-Bel(~A), the plausibility of A. 

 Focal Element: The subsets A of U are called the focal 

elements of the support function Bel when m(A)>0. 

 



DEMPSTER-SHAFER THEORY 

 Some related terms and facts: 

 Doubts: Bel(A) partially describes the beliefs about 

proposition A, belief in ~ A (doubt) can be defined as 

D(A)= Bel(~A) 

 Hence Upper bound of the interval can be defined as  

P1(A) = 1- D(A) =1-Bel(~A).  

 Confidence: The Belief interval,[Bel(A), P1(A)], is also 

sometimes refereed to as a confidence in A, while the 

quantity P1(A) –Bel(A) is referred to as the uncertainty 

in A. 

 



DEMPSTER-SHAFER THEORY 

 It can be shown that (Prade 1983) 
 P1($) =0, P1(U)=1 

 For all A 

 P1(A) >=Bel(A), 

 Bel(A)+Bel(~A)<=1, 

 P1(A) +P1(~A)>=1, and 

 For ACB, 

 Bel(A) <=Bel(B), P1(A)<=P1(B) 

 In interpreting the above definitions, it should be noted that a portion of belief may be 

committed to a set of propositions, but need not be, and if committed, it is not necessary 

to its negation. However, a belief committed to a proposition is committed to any other 

proposition it implies.   



DEMPSTER-SHAFER THEORY 

 [0,1] represents no belief in support of the 

proposition  

 [0,0] represents the belief the proposition is false 

 [1,1] represents the belief the proposition is true 

 [.3,1] represents partial belief in the proposition  

 [0,.8] represents partial disbelief in the proposition 

 [.2,.7] represents belief from evidence both for and 

against the proposition 

 



DEMPSTER-SHAFER THEORY 

 When evidence is available from two or more 

independent KS Bel1 and Bel2 then Demster has 

provided such a combining function denoted by 

Bel1 o Bel2. 

 Let m1 and m2 are two basic probabbility assignment 

function to the Bel1 and Bel2 

 Let A1, . . . .Ak be focal elements for Bel1 and B1, . . . ., 

Bp be the focal elements for Bel2. 

 m1(Ai) and m2(Bj) each assign probability masses on 

the unit interval. They can be orthogonally represented  

as: 

 



DEMPSTER-SHAFER THEORY 

    m1(A1) . . .. . . . . . . . . . .m1(Ai). . . . .. 

. 

. 

m2(Bj) 

.  

.  

m2(B1) 

 



DEMPSTER-SHAFER THEORY 

 The unit square square represents the total 
probability mass assigned by both m1 and m2 for 
all of their common subsets. 

 Particular rectangle within the square, shown as the 
intersection of the sets Ai and Bj, has committed to 
it the measure m1(Ai)m2(Bj). Therefore the total 
probability mass committed to C will be 

 ∑m1(Ai)m2(Bj) Its normalised form after removing   
    Ai^Bj=c 

Ai^Bi=@ 

m1 o m2= ∑m1(Ai)m2(Bj) / ∑m1(Ai)m2(Bj 

                    Ai^Bj      Ai^Bj#0 

 



DEMPSTER-SHAFER THEORY 

 Ex of problem of identifying the terrorist group from A, B, 
C, D THE POSSIBLE CASES ARE 

    {A,B,C,D} 

 

 {A,B,C}      {A,B ,D}  {A,C,D}         {B,C,D} 

 

{A,B} {A,C} {B,C} {B,D} {A,C} {C,D} {B,D} {C,D} 

 

     {A}        {B}                {C}                {D} 

 

       {Q} 

    



DEMPSTER-SHAFER THEORY 

 Assume that one group A and C were responsible 
to a degree of m1({A,C}) =0.6, 

 ANOTHER SOURCE OF EVIDENCE DISPROVES 
THE BELIEF THAT c WAS INVOLVED hence it 
means m2({A,B,D}) = 0.7. 

 To obtain the pooled evidence, we compute the 
following quantitites. 

 m1  o m2({A}) = 0.6 * 0.7 = 0.42 

 m1  o m2({A,C}) = 0.6 * 0.3 = 0.18 

 m1  o m2({A,B,D}) = 0.4 * 0.7 = 0.28 

 m1  o m2({U}) = 0.4 * 0.3 =0.12 

 m1  o m2 for all other set =0 

 Bel1({A,C}) = m({A,C}) + m({A}) + m({C}) 

 



BAYESIAN NETWORKS 

 A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions 

 

 Syntax: 
 a set of nodes, one per variable 

  

 a directed, acyclic graph (link ≈ "directly influences") 

 a conditional distribution for each node given its parents: 
P (Xi | Parents (Xi)) 

 

 In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values 



EXAMPLE 

 Topology of network encodes conditional 
independence assertions: 

 

 

 

 

 

 

 Weather is independent of the other variables 

 Toothache and Catch are conditionally independent 
given Cavity 



EXAMPLE 

 I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar? 

 

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

 

 Network topology reflects "causal" knowledge: 

 A burglar can set the alarm off 

 An earthquake can set the alarm off 

 The alarm can cause Mary to call 

 The alarm can cause John to call 



EXAMPLE CONTD. 



COMPACTNESS 

 A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values 

 

 Each row requires one number p for Xi = true 
(the number for  Xi = false is just 1-p) 

 

 If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers 

 

 I.e., grows linearly with n, vs. O(2n) for the full joint distribution 

 

 For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31) 



SEMANTICS 

The full joint distribution is defined as the product of the local 

conditional distributions: 

 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

 

e.g., P(j  m  a  b  e) 

 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 

 

 

 

n 



CONSTRUCTING BAYESIAN NETWORKS 

 1. Choose an ordering of variables X1, … ,Xn 

 2. For i = 1 to n 

 add Xi to the network 

  

 select parents from X1, … ,Xi-1 such that 

 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1) 

 

This choice of parents guarantees: 

 

P (X1, … ,Xn)  = πi =1 P (Xi | X1, … , Xi-1) 

(chain rule) 

   = πi =1P (Xi | Parents(Xi)) 

(by construction) 

n 

n 



EXAMPLE 

 Suppose we choose the ordering M, J, A, B, E 

  

 

 

 

 

P(J | M) = P(J)? 

 

 



EXAMPLE 

 Suppose we choose the ordering M, J, A, B, E 

  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? 

 

 



EXAMPLE 

 Suppose we choose the ordering M, J, A, B, E 

  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)?  

P(B | A, J, M) = P(B)? 



EXAMPLE 

 Suppose we choose the ordering M, J, A, B, E 

  

 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? 



EXAMPLE 

 Suppose we choose the ordering M, J, A, B, E 

  

 

 

 

 

P(J | M) = P(J)? 

No  

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)? Yes 



P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? No 

P(E | B, A, J, M) = P(E | A, B)? Yes 

 



EXAMPLE CONTD. 

 

 

 

 

 

 

 Deciding conditional independence is hard in noncausal 

directions 

 (Causal models and conditional independence seem 

hardwired for humans!) 

 Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers 

needed 

  



SUMMARY 

 Bayesian networks provide a natural representation 

for (causally induced) conditional independence 

 Topology + CPTs = compact representation of joint 

distribution 

 Generally easy for domain experts to construct 



THE FUZZY SET REPRESENTATION FOR  

“SMALL INTEGERS” 

 



REASONING WITH FUZZY SETS 

  Lotfi Zadeh’s fuzzy set theory 

  Violates two basic assumption of set theory 

 For a set S, an element of the universe either belongs to 

S or the complement of S. 

 For a set S, and element cannot belong to S or the 

complement S at the same time  

  Jack is 5’7”. Is he tall? Does he belong to the set of 

tall people? Does he not belong to the set of tall 

people? 



A FUZZY SET REPRESENTATION FOR THE SETS 

SHORT, MEDIAN, AND TALL MALES 



FUZZY LOGIC 
  Provides rules about evaluating a fuzzy truth, T 

  The rules are: 

 T (A B) = min(T(A), T(B)) 

 T (A  B) = max(T(A), T(B)) 

 T (¬A) = 1 – T(A) 

  Note that unlike logic T(A  ¬A) ≠ T(True) 

 

 



THE INVERTED PENDULUM AND THE ANGLE  AND 

D/DT INPUT VALUES. 

 



THE FUZZY REGIONS FOR THE INPUT VALUES 

 (A) AND D/DT (B) 



THE FUZZY REGIONS OF THE OUTPUT VALUE U, INDICATING 

THE MOVEMENT OF THE PENDULUM BASE 



THE FUZZIFICATION OF THE INPUT MEASURES 

X1=1, X2 = -4 



THE FUZZY ASSOCIATIVE MATRIX (FAM) FOR 

THE PENDULUM PROBLEM 



THE FUZZY CONSEQUENTS (A), AND THEIR 

UNION (B) 

The centroid of the union (-2) is the crisp output. 



MINIMUM OF THEIR MEASURES IS TAKEN AS 

THE MEASURE OF THE RULE RESULT 



PROCEDURE FOR CONTROL 

  Take the crisp output and fuzzify it 

  Check the Fuzzy Associative Matrix (FAM) to 

see which rules fire 

(4 rules fire in the example) 

  Find the rule results 

  ANDed premises: take minimum 

  ORed premises: take maximum 

  Combine the rule results 

(union in the example) 

  Defuzzify to obtain the crisp output 

(centroid in the example) 



COMMENTS 

  “fuzzy” refers to sets (as opposed to crisp sets) 

  Fuzzy logic is useful in engineering control where the 

measurements are imprecise 

  It has been successful in commercial control applications: 

automatic transmissions, trains, video cameras, electric shavers 

  useful when there are small rule bases, no chaining of inferences, 

tunable parameters 

  The theory is not concerned about how the rules are created, but 

how they are combined 

  The rules are not chained together, instead all fire and the results 

are combined 


